AN13478

Implementing FOTA on i.MX RT600

Rev. 0 — 06 June 2022

Application Note

. Contents
1 Introduction 1 Introduction............ccoovmiiiiniiniinnns 1
This application note introduces the implementation of FOTA on i.MX RT600. g ?g%_:nd SIFW O\tletrlwew """""""""" :
The Secure Bootloader (SBL) and Secure Firmware (SFW) are an Open 4 Conclulgsgnemen AUON-vvveerenenseoee '24
Source Project (OTA) for MCU, launched by NXP. This project supports most 5 References. """""""""""""""""""" 24
chips of the .MX RT series and LPC55S69. 6 Revision history..........cccoccceninenn. 25
Legal information..............cccccvieiieninnnen. 26

2 SBL and SFW overview

The SBL and SFW are a secure firmware upgrade project for MCU, launched by NXP. The SBL is a second bootloader used with
the FOTA-capable firmware. It manages the upgrade period by verifying and writing the new firmware image to the designated
area of internal or external storage devices.

The SFW is based on FreeRTOS and is designed to implement a complete FOTA process together with the SBL. The SFW
supports to obtain new firmware image through U-Disk and SD card locally, and remotely through the AWS cloud or Alibaba Cloud.
After getting a new firmware image, the SFW itself writes the image to the storage device and set the corresponding flag, then
reboot the device. After entering the SBL, it checks the new firmware image and completes the upgrade. See Figure 1 for the
structural block diagram of SBL and SFW.

SBL&SFW

« For NXP MCU
OTA Cloude * External or internal Flash device
+ Complete OTA secure trust chain
SBL ISP: UART, USB
Local OTA : U-Disk and SD Card

+ Remote OTA AWS, Aliyun
/ + Supports GCC, IAR, MOK

High scalability via menuconfig
Security
Engine
WI-FI - —— USB
MCU
Ethernet —— UART ====

Program

Sign Encrypt

eFuse SB/SB2
Secure Firmware (SFW) SBL ISP

Figure 1. SBL and SFW diagram

Host Tool

3 FOTA implementation

This section demonstrates step-by-step procedure on how to use the SBL and SFW to perform OTA functions by SD Card or
U-Disk with the example of i.MX RT600. Table 1 lists the NXP MCU boards supported by SBL and SFW. For details on SBL and
SFW architecture, refer to FOTA Design for SBL and SFIW(document AN13460).

h o
P

https://www.nxp.com/doc/AN13460

NXP Semiconductors

Table 1. Supported NXP MCU boards

FOTA implementation

Board Architecture Boot device Security SBL SFW OTA
Signature | Encryption | ISP | Swap | Remap | U-Disk | SDcard | AWS | Aliyun

evkmimxrt1010 CM7 QSPI Flash . . . o °

evkmimxrt1020 CM7 QSPI Flash . o . ° ° ° . .
evkbmimxrt1050 | CM7 Hyper Flash . [° . o ° ° °
evkmimxrt1060 CM7 QSPI Flash . .) ° ° ° . .
evkmimxrt1064 CM7 QSPI Flash J ° . o ° ° . .
evkmimxrt1170 | CM7+CM4 QSPI Flash o o ° . °) . .
evkmimxrt500 CM33+F1 Octal Flash . [. o ° °

evkmimxrt600 CMB33+HiFi4 | Octal Flash J o . ° ° °

Ipc55s69 CM33+CM33 | Internal Flash . . . °) .

3.1 Signed + Non-encrypted OTA

FOTA includes signature and encryption functions, this chapter first introduces the combination of signature + no encryption.

1. Find the SFW path: sfw\target\evkmimxrt600 in the SFW package.
2. Double-click env.bat.

3. Runthe cmd scons -menuconfig to SFW configuration menu, see Figure 2.

emd - scons --menucenfig

B8 <1> cmd - scons -

MCU-5Fl RT66@ Configuration

] bt

[Search PIE-H-&0=

Arrow keys navigate the menu. <Enter»> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y»> includes, <N»> excludes, <M>
modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

MCU SFW core ---Y]
MCU SFW Component --->
Platform Drivers Config ---

Figure 2. SFW configuration menu

kconfig-mconf.exe™[32]:52152 «180206[64] 1/1 [+] NUM

PRI 172337

(52,9) 25V

29720 100% 7~

4. Select MCU SFW core > Enable OTA > OTA from sdcard > OTA from u-disk, see Figure 3.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

2/28

NXP Semiconductors

FOTA implementation

emd - scons --menucanfig _ o X

B <1> cmd - scons - 'D'."_s_lz

MCU SFW core
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y» includes, <N> excludes, <M»
modularizes features. Press <Esc><Esc> to exit, <2?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

nable sfw standalone xip|

Enable OTA
OTA from sdcard
OTA from u-disk

MCU SFW Flash Map ---»

kconfig-mconf.exe*[32]:5215 « 180206[64] 1/1 [+] NUM

Figure 3. SFW OTA configuration

5. Select MCU SFW Component > secure.

NOTE
Do not select the Encrypted XIP function.

emd - scons --menuconfig _ O %

B <1> cmd - scons - 'D'_"_n_lz

secure
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes, <M>
modularizes features. Press <Esc><Esc> to exit, <2?» for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

] Encrypted XIP function|
] enable mbedtls

kconfig-mconf.ex

Figure 4. SFW component configuration

6. To save the configuration, select Save > Modified and exit, see Figure 4.

The SFW project supports three compilation tool-chains:

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 3/28

NXP Semiconductors

FOTA implementation

+ IAR
* KEIL
+ GCC

Here, use IAR to generate the sfw.bin file.

7. Run scons --ide=iar in the scons window and generate the SFW IAR project, see Figure 5.

emd -] X

@8 <1> cmd st SlE-L-ali=

I configuration written to .config

End of the configuration.
ecute ‘scons’ to sta the build or try 'scons -h"
file, execute command:

Figure 5. Generate IAR project

8. Find the path sfw\target\evkmimxrt600\iar in SFW IAR project.

9. Open the SFW IAR project,
a. Change hello sfw to hello sfw image1, compile, and generate sfw.bin.
b. Change hello sfw to hello sfw image2, generate sfw.bin.

Rename the sfw.bin to sfw2.bin. Now, two sFw.bin files are ready, see Figure 6.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 4/28

NXP Semiconductors

FOTA implementation

e sfw - IAR Embedded Workbench IDE - Arm 8.50.9

File Edit View Project CMSIS-DAP Tools Window Help

DR =B XE0 SC =< Q> &< B>

Workspate v & X | manct x stwc
sfr «| \main(
18 /4
. 2 Copyright (z) 2013 - 2015, Freescals Semicondustor,
v 3 |+ Copyright 2016-2021 NXP
L4 4 4 A1l rights reserved.
5|
6 | ¢ SEDE-License-Identifier: BSD-3-Clause
L] 7 s
. 8
s 9 #include <afw.h>
s 10 #include "fsl device registers.h”
11 #include "fsl_debug_comsole.h”
- 12 #include "board.h"
- 13
. 14 #include "pin_rux.h"
15 #include "clock config.h”
L6 [/AR ARA AU KRS R A48 AR A& A44SR A K A4 KR SR AR K AR ER KRR A AR AR AR EAARARARARARRARAR
e 17T 4 Definitions
. B L] rorsresrarssancsransnasssnsesnsnstessstsssnnsransinnsarasaressarsrasessansrans]
. 13
utiltie 20 0 /AR AR AR AR AE R AR A A& R AR AR AR AR R4 ERER AR R RRERE R AR AR AR R KR AR R AR R RRER AR
xip 21T + Prototypes
L& i Output 22 L R KA AR AR AR R KRR R AR R B KRR AR AR KR KA AR AR AR A
23
28 [/AR AR AR R R AR AR AR A AR AR AR KA ER £ A AR A AR AR K AR AR AR AR AR AR AR AR KRR RRAR
25T + Code
P

213 /41
28 # Bbrief Main function
4

29

30 int main{void)

31 1{

32 /% Init board hardvare. 4/
33 BOARD_InitPins ();

34 BORRD_BootClockRUN () ;

35 BOARD_InitDebugConsole();
36

37 PRINTF ("hello sf.\r\n"};
38

39 sfw main();

40

41 return 07

4 |}

43

Figure 6. sfw.bin generate

10. Find the path of SBL: sb1\target\evkmimxrt600 in SFW IAR project.

11. Double-click env.bat file, you get the window as shown in Figure 7.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

5/28

NXP Semiconductors

FOTA implementation

emd - scons --menuconfig

B8 <1> cmd - scons -

MCU-SBL RT608 Configuration
---> (or empty submenus ----). Highlighted letters are hotkeys.
Legend: [*] built-in

Arrow keys navigate the menu. <Enter> selects submenus

<M> modularizes features.

Press <Esc><Esc> to exit, <2> for Help, </» for Search.

Pressing <¥> includes, <N> excludes,

[] excluded <M> module < > module capable

MCU SBL core --->

|| Mcu SBL Component ---»

Platform Drivers Config

Figure 7. SBL component configuration

12. Select MCU SBL Component > secure > signature function.

13. Select signing method as Select signature type ROM use. Here, take ROM use as an example, two other signature

methods are also supported, see Figure 8.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

6/28

NXP Semiconductors

FOTA implementation

Selected signing method
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <2?» for additional information about this

{) Select signature type RSA

elect signature type ROM useg

{) Select signature type ECDSA P256

Figure 8. SBL secure configuration

14. Return to the previous window, because the signature + non-encryption is demonstrated first.

NOTE
Do not select Encrypted XIP function.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
7/28

Application Note

NXP Semiconductors

15.

16.

17.
18.

19.

20.

FOTA implementation

emd - scons --menucenfig - [m] X

8 <1> amd - scons - [fearcn PE-LH-&00 =

secure
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <¥» includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

:] elect image security function|
[*1 Signature function
Selected signing method (Select signature type ROM use)
[1] Encrypted XIP function
[*] enable mbedtls
(mcuboot-mbedtls-cfg.h) Set mbedtls config file

Figure 9. SBL signature configuration

To save the configuration, select Save > Modified and exit, see Figure 9.

The SBL project supports three compilation tool-chains:
« IAR
« KEIL
+ GCC

Here, use IAR to generate the sbl.bin file.

Run scons --ide=iar in the scons window and generate the SBL IAR project, compile SBL project, and
generate sbl.bin.

Place the sbl.bin, sfw.bin, and sfw2.bin files at the path sbil\target\evkmimxrt600\secure.
To enable ROM secure boot:

a. Generate keys and certificates, refer to chapter "7.4.4.1, Generating Keys and Certificates" of MCU-OTA SBL and
SFW User Guide (document MCUOTASBLSFWUG).

b. Copy folder keys and crts folder path sbl/target/evkmimxrt600/secure.

Use scripts to generate signed SBL and SFW, and download them to the RT600 EVK board. Since OTP can only be
burned once, so use only shadow instead of burning OTP.

Put the attached scripts ot fad enable.jlink and rkth otpmaster.jlink at the
path sbl\target\evkmimxrt600\secure.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note 8/28

https://github.com/NXPmicro/sbl/blob/master/doc/MCUOTASBLSFWUG.pdf

NXP Semiconductors

FOTA implementation

21. Openthe sign sbl app.bat, add Jlink related scripts are shown in Figure 10.

22. Modify the JLink installation directory, serial number, and com port to be currently used.

23. Setthe signing type to ROM_API, see Figure 11.

off
"PATH=C: \nxp\MCUX_Provi_w3.1\bin\tools\elftosb\win;%PATH®:"
"PATH=C: Ynxp\MCUX_Provi_v3.1\bin\tools\blhost\win;%¥PATHX:"
"PATH=C: \nxp\MCUX_Provi_v3.1\bin\tools\cst\mingw32\bin;XPATHZ"
imgtool path=..%\..\..\component\secure\mcuboot\scripts

SEGGERM\JLink\JLink.exe"

Jlink="C:\Program Files (
jlink_serial number=6808113866

com_port=C0M25

on

signing type=ROM API

mcu_header size-0x4080

Figure 10. SBL Jlink script modification

%11ink% -SelectEmuBySN %jlink_ serial number% -Device MIMXRT685S M33 -

Figure 11. SBL Jlink script configuration

SWD -Speed auto -ExitOnError -CommanderScript rkth_otpmaster.jlink

24. Openthe sign_enc sfw.bat.

25. Setthe signing_ type to ROM API.

26. Modified the sfw2_otfad arg, see Figure 12.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

9/28

FOTA implementation

off
"PATH=C - \nxp\MCUX_Provi_v3.1\bin\tools\elftosb\win;%PATH:"
"PATH=C: \nxp\MCUX_Provi_v3.1\bin\tools\blhost\win;XPATHZ"
"PATH=C: \nxp\MCUX_Provi_v3.1\bin\tools\cst\mingw32\bin; ZPATHX:"
"PATH=C: \nxp\MCUX_Provi_v3.1\bin\tools\image_enc\win;%PATH%"
imgtool_path=..\..\..\component\secure\mcuboot\scripts

user kek-kek-0102030405060703090a0b0c0d0=0F00
sfw2 otfad arg-otfad arg-[08112233445566778899aabbccddeet,0020406001030507 ,0x08101000,0x0000]

on

signing_type-ROM_API

mcu_header_size-8x488

Figure 12. SFW Jlink script configuration

27. Run sign_enc_sfw.bat in scons window and generate the sfw_2 enc.bin file, see Figure 13.

» cd secure

» sign_enc_sfw2.bat
lset signing_type=ROM_API
lset mcu_header_size=8x480

if not exist ".\sfw2.bin" (
echo Can't find file sfw2.bin
pause

exit

)

if ROM_API == ROM_API (
elftosb -V -f rtéxx -] .\signed_sfw2_xip.json
python img_helper.py paddingimage --pad-size 8x40@ --input .\sfw_2_signed.bin --output .\sfw_2_padding.bin
image enc.exe hw_eng=otfad ifile=.\sfw_2 padding.bin ofile=.\sfw_2 enc.bin base addr-8xe28100000 kek-=0182838405068783090a0b0cAdec@T@® otfad arg=[80112233445566
python img_helper.py extract-keycontext --type otfad --enc_image .\sfw_2_enc.bin --output .\sfu_2_keyblob.bin
python ..\..\..\component\secure\mcuboot\scripts\imgtool.py create --align 4 --version "1.1" --header-size 8x488 --pad-header --slot-size @x180000 --key-inf
python img_helper.py merge --header-size ©x48@ --sign-image .\sfw_2 bootheader.bin --enc-image .\sfw_2_enc.bin
) else (
python img helper.py paddingimage --pad-size @x48@ --input .\sfw2.bin --output .\sfw_2.bin
image enc hw_eng=otfad ifile=.\sfw_2.bin ofile=.\sfw_2 enc.bin base_ addr-8x08100000 kek-0102030485060763000a0b0c@deecfP® otfad arg=[8811223344556677889%aabbcc
python img_helper.py extract-keycontext --type otfad --enc_image .\sfw_2_enc.bin --output .\sfu_2_keyblob.bin
if ROM_API == RSA2048 (python ..\..\..\component\secure\mcuboot\scripts\imgtool.py sign --key ..\..\..\component\secure\mcuboot\scripts\sign-rsa2e48-priv.pem
-max-sectors 32 --key-info .\sfw_2 keyblob.bin .\sfw2.bin .\sfw_2 sign.bin) else (python ..\..\..\component\secure\mcuboot\scripts\imgtool.py sign --key ..\
n "1.1" --header-size 0x488 --pad-header --slot-size @x188008 --max-sectors 32 --key-info .\sfu_2_keyblob.bin .\sfw2.bin .\sfw_2_sign.bin)
python img_helper.py merge --header-size ©x48@ --sign-image .\sfw_2 sign.bin --enc-image .\sfw_2_enc.bin
)
Parsing configuration file: .\signed_sfw2_xip.json.
No "multicoreImages” section present in configuration file: .\signed sfw2 xip.json.
Used "imagelinkAddress" value: 135270480.
Used "imageBuildMumber” value: 1.
Success.
Starting processing image....
1. Check of the image file.
Success. (File ./sfw2.bin: Size = 143689 bytes, AlignedSize = 143692 bytes)
2. Checking multicore configuration.
Image is not containing multicore data.
Success.
3. Fetching of image configuration: execution target and security.
Internal flash (XIP) - plain signed: image will be signed based on provided configuration.
Success.
3.1 Checking image link address configuration.
Image link address will be set to: @x8810180@
Success.
3.2 Checking image trust zone configuration.
Trust zone enabled image: configuration of TZM-M_Preset disabled -» TZM-M_PresetFile is ignored and not used.
3.3 Checking image HW user mode keys enablement for all security levels.
HW user mode key disabled.
Success.
Start to generate signed image!
Load the root certificates.
4.1 Load the count of root certificates.

Figure 13. Run sign_enc_sfw.bat

28. Prepare the RT600 EVK boa
a. Connect the Jlink to the board at JTAG interface.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note

NXP Semiconductors

FOTA implementation

b. Make sure that the jump JP2 is open.
c. Connect the USB cable to the board at JP5.
d. Set SW5 to ON, OFF, OFF to make RT600 ISP enter into serial ISP mode.

e. Run sign _sbl app.bat in the scons window and generate the signed sbl and signed sfw file, see Figure 14.

f. Download signed sb1 and signed sfw file on the RT600 EVK board.

cmd - sign_sbl_app.bat

EE <1 cmd - sign_sbl

» sign_sbl_app.bat
set signing_type=ROM_API
set mcu_header_size-0x488

if not exist ".\sbl.bin" (
echo Can't find file sbl.bin
pause

exit

)

elftosb -V -f rtéxx -7 .\signed_sbl_xip.json
Parsing configuration file: .\signed_sbl_xip.json.
No "multicoreImages” section present in configuration file:
Used "imagelinkAddress
Used "imageBuildNumber
Success.
Starting processing image....
1. Check of the image file.
Success. (File ./sbl.bin: Size =5 bytes, AlignedSize = 64 bytes)
2. Checking multicore configuration.
Image is not containing multicore data.
Success.
Fetching of image configuration: execution target and security.
Internal flash (XIP) - plain signed: image will be signed based on provided configuration.
Success.
Checking image link address configuration.
Image link address will be set to: @x88eeleee
Success.
Checking image trust zone configuration.
Trust zone enabled image: configuration of TZM-M_Preset disabled -> TZM-M_PresetFile is ignored and not used.
Checking image HW user mode keys enablement for all security levels.
Hi user mode key disabled.
Success.
Start to generate signed image!
Load the root certificates.
.1 Load the count of root certific
Success. (Root Certificate Count = 4)
.2 Load selected certificate chain id, used to sign this image.
Success. (Selected certificatate chain index = @)
.3 Load all root certificates.
Root certificate @ is self
Success. (Root Certificate
Root certificate 1 is self
Success. (Root Certificate !
Root certificate is self
Success. (Root Certificate
Root certificate is self
Success. (Root Certificate
.4 Calculate size of root cer
Success. (Root Certificate S 819 bytes, Aligned Size = 828 bytes)
Load all certificates in selected
Load the count of chained certificates in selected certificate chain.
Success. (C ificate count =
Load and parse 5 tes in selected certificate chain.

Asigned_sbl_xip.json.

Figure 14. Run sign_sbl_app.bat

29. Set SW5 to ON, OFF, ON to make RT600 ISP enter into boot from flexspi port b mode.
30. Press SW3, reset RT600.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

11/28

NXP Semiconductors

FOTA implementation

31. Open the serial port terminal on the PC, and you see the log hello sfw imagel as shown in Figure 15, which represents
SBL and SFW has run successfully.

hello sbl.
Bootloader Version 1.1.0
Remap type: none

The image now in PRIMARY_SLOT slot
Bootloader chainload address offset: 0x100000

Reset_ Handler address offset: 0x100400
Jumping to the image

hello sfw image1.

Current image verison: 1.0.0
U-Disk updating task enable.
SD Card updating task enable.
Hello world1.

Hello world2.

Please plug in a u-disk to board.
Hello world1.

Hello world2.

Helle world1.

Hello world?2.

Hello world1.

Helle world2.

Figure 15. SBL and SFW successfully run logs

32. Putthe sfw 2 enc.bingenerated by sign enc sfw.bat into the SD card or U-Disk, and rename it to newapp.bin. Here,
take SD as an example for demonstration insert the SD into the SD card slot of the RT600 EVK board.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 12/28

NXP Semiconductors

FOTA implementation

Card inserted.

Hello world1.

Hello world2.

Hello world1.

Hello world2.
reading...

new img verison: 1.1.0

updating...

Hello world1.

finished

write update type = 0x1

write magic number offset = Oxff0
Please remove the SD Card!

Sy's rst..

Figure 16. SBL and SFW successfully update logs

33. Remove the SD card when you see the log Please remove the SD card as shown in Figure 16.

34. Reset the RT600 and you see the log hello sfw image2 as shown in Figure 17, which represents SFW has been
updated successfully.

hello sbl.
Bootloader Version 1.1.0
Remap type: none

The image now in SECOMDARY_SLOT slot

Bootloader chainload address offset: 0x100000
Reset_Handler address offset: 0x100400
Jumping to the image

hello sfw image2.

Current image verison: 1.1.0
U-Disk updating task enable.
SD Card updating task enable.
Hello world1.

Hello world2.

Please plug in a u-disk to board.
Hello world1.

Hello world2.

Figure 17. SBL and SFW successfully update and boot logs

So far, FOTA has demonstrated the signature + non-encryption function on the RT600 EVK board.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 13/28

NXP Semiconductors

FOTA implementation

3.2 Signed + Encrypted OTA

FOTA includes signature and encryption functions, this chapter introduces the combination of signature + encryption.
1. Find the SFW path: sfw\target\evkmimxrt600 in the SFW package.
2. Double-click env.bat.

3. Run the cmd scons -menuconfig to SFW configuration menu, see Figure 18.

cmd - scens --menuconfig -

MCU-5Fl RT66@ Configuration

modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

B <1> cmd - scons - [fexch — PlE-W-&L0=

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <¥»> includes, <N> excludes, <M>

MCU SFW core ---»
MCU SFW Component --->
pPlatform Drivers Config

Figure 18. SFW configuration menu

kconfig-mconf.exe*[32]:52152 « 180206[64] 1/1 [+] NUM PRI 172x 52,9) 25V

4. Select the MCU SFW core > Enable OTA > OTA from sdcard > OTA from u-disk, see Figure 19.

cmd - scons --menuconfig -

MCU SFMW core

modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

E¥ <1> omd - scons - ‘D‘."_;_IE

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M>

nable sfw standalone xip|

Enable OTA
OTA from sdcard
OTA from u-disk
MCU SFW Flash Map

kconfig-mconf. :5215: «180206[64] 171 [+] NUM

Figure 19. SFW OTA configuration

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

14 /28

NXP Semiconductors

FOTA implementation

5. Select MCU SFW Component > secure > Encrypted XIP function.

cmd - scons --menucenfig

oo Grr —AB-E-60=

secure -
Arrow keys navigate the menu. <Enter» selects submenus ---» (or empty submenus ----). Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes, <M>
modularizes features. Press <Esc»<Esc> to exit, <2?> for Help, </»> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

ncrypted XIP function|
enable mbedtls

config-mconf.ex

Figure 20. SFW component configuration

6. To save the configuration, select Save>Modified and exit, see Figure 20.

The SFW project supports three compilation tool-chains:
* IAR
« KEIL
+ GCC

Here, use IAR to generate the sfw.bin file.

7. Run scons --ide=iar in the scons window and generate the SFW IAR project, see Figure 21.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 15/28

NXP Semiconductors

FOTA implementation

cmd — [m] *

@ oo ona E—al Mhy e

configuration written to .config

of the configuration.
te "scons’ to start the build or tr
ate the IDE]

‘scons --ide=mdk5,

> scons --ide=iar
: Reading onscript files ...
: done reading SConscript files.
: Building targets ...
: building associated VariantDir targets: build
* is up to date.
: done building targets.

Figure 21. Generate IAR project

8. Find the path sfw\target\evkmimxrt600\iar, open the SFW IAR project:
a. Change hello sfw to hello sfw image1, compile, and generate sfw.bin.
b. Change hello sfw to hello sfw image2, generate sfw.bin.

Rename the sfw.bin to sfw2.bin. Now, two sFw.bin files are ready, see Figure 22.

e sfw - IAR Embedded Workbench IDE - Arm 8.50.9
File Edit View Projed CMSISDAP Tools Window Help

NORR = XBE 9cC < Q252 B >0 RO-= 0+ _idh.
Workspace v & X | mainct x sfwe
sfu | |main[)
. 1
Files & . 2
B @ sfw - sfw v 3
(@ o board L] 1
3 i device s
@ o driver €
(@ i fatfs . 7
@ Wl firmurare O 8
i flashiap . 9 #include <sfw.h>
i freertos kernel - 10 #include "fsl_device_registers.h”
i lists 11 ¢include "fsl_debug console.h®
=, - 12 ¢include "board.h"
F1 i scmme . =] . .
|- 8 serial_manager . i |fivcicoe Tpinmoxh
= - 15 tinclude "clock_config.h"
&1 8 source
El mainc .
& i uar-adapter .
b= W ush .
@ o utiliie S0] /AR ARG R KRR A AR R R4 6 R AR A AR AR A6 R R AR AL AL AR LKA RGN R
@ W xip 21T * Prototypes
L@ o Output 22 ARRER KA R AR AR A4 AR AR R KA R4 R AAAAA AR AR A KRR R RAAAARARRRA LR ERRRERARARARRRAA]
23
28 [/KRR KR4 KA R AR AR KA K AR R KA KA KR KA KA KRR R A KR KRR ERA KA R R KRR R
ZET .
26 L s
27
25T
2g L 4y
30 int main{void)
EIN=
32 * Init boar
33 BORRD_InitPins():
31 BOARD_BootClockRUN () 5
35 BOARD_InitDebugConsole ()
36
37 ERINTE ("hello sfil.\r\n");
38
39 stw_main();
40
41 return 0;
42 |}
43

Figure 22. sfw.bin generate

9. Find the path of SBL: sb1\target\evkmimxrt600.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 16/28

NXP Semiconductors

10. Double-click env.bat file, you get the window as shown in Figure 23.

FOTA implementation

cmd - scans --menuconfig

B8 <1> cmd - scons -

MCU-SBL RT608 Configuration

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys.

<M> modularizes features.

Press <Escy<Esc> to exit, <2> for Help, </» for Search.

Pressing <¥> includes, <N> excludes,

Legend: [*] built-in [] excluded <M> module < > module capable

MCU SBL core --->

|| Mcu SBL Component ---»

Platform Drivers Config ---

Figure 23. SBL component configuration

11. Select the MCU SBL Component > secure > signature function > signing method > Select signature type RSA. Here, take

RSA as an example, two other signature methods are also supported, see Figure 24.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

171/28

NXP Semiconductors

FOTA implementation

Selected signing method
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?»> for additional information about this

elect signature type RS/
{) Select signature type ROM use

() Select signature type ECDSA P256

Figure 24. SBL secure configuration

12. Return to the previous window, because the signature + encryption is demonstrated.

13. Select Encrypted XIP function.

IcLun o

iubmenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y» includes, <N» excludes, <M> mc
<M> module < » module capable

ﬂﬁ] elect image security function|
[*] Signature function

Selected signing method (Select signature type RSA)} --->
(2048) rsa length
[*] Encrypted XIP function

[*] enable mbedtls
(mcuboot-mbedtls-cfg.h) Set mbedtls config file

Figure 25. SBL signature configuration

14. To save the configuration, select Save > Modified and exit, see Figure 25.

The SBL project supports three compilation tool chains:
« IAR
« KEIL
« GCC

Here, use IAR to generate the sbl.bin file.

15. Run scons --ide=iar in the scons window and generate the SBL IAR project.

16. Compile SBL project and generate sbl.bin.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note 18/28

NXP Semiconductors

FOTA implementation

17. Place the sbl.bin, sfw.bin, and sfw2.bin file at the path sbl\target\evkmimxrt600\secure.
18. To enable ROM secure boot:

a. Generate keys and certificates, refer to chapter "7.4.4.1, Generating Keys and Certificates" of MCU-OTA SBL and
SFW User Guide (document MCUOTASBLSFWUG).

b. Copy folder keys and crts to folder path sbl/target/evkminxrt600/secure.

NOTE
This step only must be done only once.

19. Use scripts to generate signed SBL and SFW, and download them to the RT600 EVK board. Since OTP can only be
burned once, so only use shadow instead of burning OTP.

20. Place the attached scripts otfad _enable.jlink and rkth otpmaster.jlink atthe
path sbl\target\evkmimxrt600\secure.

21. Open the sign_enc_sbl app.bat.
22. Add Jlink related scripts as shown in Figure 26.
23. Modify the JLink installation directory, serial number, and com port to be currently used.

24. Setthe signing type to RSA2048, see Figure 27.

Jlink="C:\Program Files (x86)\SEGGER\JLink\JLink.exe"

jlink_serial_number-600113866

com_port-COM25

_otfad_arg-otfad 78899aabbc 2 8507 , Bx¢ @01, [80112233445566778899aabbccddeetf , 002 830507, 0x881010600, 8x5000]
_otfad_arg-otfad_arg=[®@ 556677889%aabbccddee 031010

signing_type-RS,

mcu_header_size-0x480

Figure 26. SBL Jlink script modification

%J1ink% -SelectEmuBySN %jlink serial number% -Device MIMXRTE85S M33 - SWD -Speed auto -ExitOnError -CommanderScript rkth_otpmaster.jlink

Figure 27. SBL Jlink script configuration

18). Open the sign_enc_sfw.bat.
25. Setthe signing_ type to RSA2048.

26. Modified the sfw2_otfad arg as shown in Figure 28.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 19/28

https://github.com/NXPmicro/sbl/blob/master/doc/MCUOTASBLSFWUG.pdf

NXP Semiconductors

FOTA implementation

off
"PATH=C : \nxp\MCUX_Provi_wv3.1\bin\tools\elftosb\wir
"PATH=C : \nxp\MCUX_Provi_wv3.1\bin\tools\blhost\win
"PATH=C : \nxp\MCUX_Provi_wv3.1\bin\tools\cst\mingw
"PATH=C : \nxp\MCUX_Provi_wv3.1\bin\tools\image_enchwin;
imgtool_path=..} .\component\secure\mcuboot\scripts

user_kek-kek=01082030485660708090a0b0cBdBe000
sfw2_otfad arg-otfad_arg=[®©

on

signing_type-RS

mcu_header_size-0x400

Figure 28. SFW Jlink script configuration

27. Run sign _enc_sfw.bat in scons window and generate the sfw_2 enc.bin file, see Figure 29.

> sign_enc_sfw2.bat

set signing_type-|

python ..
python img_helper.py merge --header-s
else (

python img_helper.

image_el

python img, s ty d _ima flu_ .bi output

if R5A26. (python _\component\secu i _py sign --ke: \C \ scripts\sign-rs.
info .\sfi eyblob.bin .\sfw2.bin .\sfw_2_sign.bin (pythen \ A pts\imgtool.py

488 --p. er sectors -info .\sfw_2 k .bin . \sfw_2_sign.bin)

merge --hea X A _sign.bin --enc

kek otp words

a Bx0b BxAc 0xBd BxPe Ox6f Bx00
rel:
0x44 ox > @xaa @xbb exdd @xee @xff
counter= @x 49 0X60 Ox01
ctx[1]: star 6x00600008, end
key % X80 0x00 0x@0 ©x08 Ox 0x08 6x00 8xB@ 0x00 OxB0 0x08 8x00
ounter b X80 ©0x00 oxee ©oxee
B8x000086008, end X
x0@ 0x00 OxB0 Ox0e 0x00 Bxe0 OxBO Ox0® Bx0O BxB@ ©x00 OxB0 0x08 0x00
0x08 0x008 6x0e 0x80 Bx00 OxB0 ©x68 ex08
exeeeeeeee, end 0000000
00 0x08 Ox00 Ox00 OxBB Bx00 OxB0 OxOB Bx00 Bx88 Ox08 OxB0 6x08 Ax08
x0@ 0x00 OxB0 Ox08 0x00 8xed Ox80
bin are the final image, press any key to download them

Figure 29. Run sign_enc_sfw.bat

28. Prepare the RT600 EVK board:
a. Connect the Jlink to the board at JTAG interface.
b. Make sure that the jump JP2 is open.
c. Connect USB cable to the board at JP5.
d. Set SW5 to ON, OFF, OFF to make RT600 ISP enter into serial ISP mode.

e. Run sign_sbl_app.bat in the scons window and generate the signed and encrypted sb1, and signed sfw file,

Figure 30.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

20/28

NXP Semiconductors

FOTA implementation

f. Download sb1, and signed sfw file on the RT600 EVK board.

» sign_enc_sbl_app.bat
set signing_type=RSA2848
set mcu_header_size-8x488

if not exist ".\sbl.bin™ (

echo Can't find file sbl.bin
pause

)

elftosb -V -f rtéxx -] igned_sbl_xip.json
Parsing configuration file: .\signed_sbl_xip.json.
No "multicoreImages” s ion present in configuration file: .\signed_sbl_xip.json.
Used "imagelinkAddress
Used "imageBuildNumber
Success.
Starting processing image....
1. Check of the image file.
Success. (File ./sbl.bin: Size = 78171 bytes, AlignedSize = bytes)
2. Checking multicore configuration.
Image is not containing multicore data.
Success.
Fetching of image configuration: execution target and security.
Internal flash (XIP) - plain signed: image will be signed based on provided configuration.
Success.
Checking image link address configuration.
Image link address will be set to: @x88861868
Success.
Checking image trust zone configuration.
Trust zone enabled image: configuration of TZIM-M_Preset disabled -» TZM-M_PresetfFile is ignored and not used.
hecking image HW user mode keys enablement for all security levels.
HW user mode key disabled.
Success.
Start to generate signed image!
Load the root certificates.
Load the count of root
Success. (Root Cer (X = 4)
2 Load selected certif hain id, used to sign this image.
Success. (Selected certificatate chain index = 8)
.3 Load all root certificates.
Root certificate @ is self
Success. (Root Certificate
Root certificate is self
Success. (Root Certificate !
Root certificate is self
Success. (Root Certificate
Root certificate
Success. (Root Cer
.4 Calculate size of root certifi
Success. (Root Certific) bytes)
5. Load all tificates in selected rtificate chain.
5.1 Load the count of rti tes in selected certificate chain.
Success. (Certif te count)
Load and parse rtificates in selected rtificate chain.
Success. (Chained certi (. /crts/ROT1_sha256_
Success. ained certi 1 ts/IMG1_1_sh

Figure 30. Run sign_sbl_app.bat

29. Set SW5 to ON, OFF, ON to make RT600 ISP enter into boot from flexspi port b mode.
30. Press SW3, reset RT600.

31. Open the serial port terminal on the PC, and you see the log hello sfw imagel as shown in Figure 31, which represents
SBL and SFW has run successfully.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 21/28

NXP Semiconductors

FOTA implementation

hello shil.
Bootloader Version 1.1.0
Remap type: none

The image now in PRIMARY_SLOT slot

Bootloader chainload address offset: 0x100000
Reset Handler address offset: 0x100400
Jumping to the image

hello sfw image1.

Current image venson: 1.0.0
U-Disk updating task enable.
SD Card updating task enable.
Hello world1.

Hello world2.

Please plug in a u-disk to board.
Hello world1.

Hello world2.

Hello world1.

Hello world2.

Hello world1.

Hello world2.

Hello world1.

Figure 31. SBL and SFW successfully run logs

32. Putthe sfw 2 enc.bingenerated by sign enc_sfw.bat into the SD card or U-disk, and rename it to newapp .bin. Here,
take U-disk as an example for demonstration:

a. Connect the USB cable to the J6 and ensure that the power supply is ON.
b. Plug the U-disk to the RT600 EVK board and update the image.

For more details, see Figure 32.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

22/28

NXP Semiconductors

FOTA implementation

hello sbl.
Bootloader Version 1.1.0
Remap type: none

The image now in PRIMARY_SLOT slot

Bootloader chainload address offset: 0x100000
Reset_Handler address offset: 0x100400
Jumping to the image

hello sfw image1.

Current image venson: 1.0.0
U-Disk updating task enable.
SD Card updating task enable.
Hello world1.

Hello world2.

Please plug in a u-disk to board.
Hello world1.

Hello world2.

Hello world1.

Hello world2.

mass storage device attached:pid=0x1666vid=0x951 address=1
U-Disk OTA test

fatfs mount as logiacal driver 1
Hello world1.

Hello world2.

Helle world1.

Hello world2.

reading...

new img verison: 1.1.0
updating...

finished

write update type = 0x2

write magic number offset = Oxfff0
Please unplug the u-disk!

sys rst...

Figure 32. SBL and SFW successfully update logs

33. Unplug the U-disk when you see the log Please unplug the u-disk as shown in Figure 33.

34. Reset the RT600 and you see the log hello sfw image2 as shown in Figure 33, which represents SFW has been

updated successfully.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

23/28

NXP Semiconductors

Conclusion

hello sbl.
Bootloader Version 1.1.0
Remap type: none

The image now in SECONDARY_SLOT slot

Bootloader chainload address offset: 0x100000
Reset Handler address offset: Ox100400
Jumping to the image

hello sfw image2.

Current image verison: 1.1.0
U-Disk updating task enable.
SO Card updating task enable.
Hello world1.

Helle world2.

Please plug in a u-disk to board.
Hello world1.

Helle world2.

Hello world1.

Hello world2.

Figure 33. SBL and SFW successfully update and boot logs

So far, FOTA has demonstrated the signature + encryption function on the RT600 EVK board.

4 Conclusion

When using FOTA, some notes worth paying attention to:

1. This application note only introduces the security-related upgrade method based on remapping. For functions such as
single image, and ISP, refer to MCU-OTA SBL and SFW User Guide (document MCUOTASBLSFWUG).

2. In the actual operation process, since OTP can only be burned once, the method of writing shadow through Jlink is used
instead of burning some OTP. For the Jlink script involved in this article, see the related software released with this
application note.

3. This application note does not describe the design architecture and specific content of SBL and SFW. For more details,
refer to FOTA Design for SBL and SFIWV (document AN13460).

5 References

» SBL Repository Link: https://github.com/NXPmicro/sbl

* SFW Repository Link: https://github.com/NXPmicro/sfw

* MCU-OTA SBL and SFW User Guide (document MCUOTASBLSFWUG)
* FOTA Design for SBL and SFWW (document AN13460)

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022
Application Note 24 /28

https://github.com/NXPmicro/sbl/blob/master/doc/MCUOTASBLSFWUG.pdf
https://www.nxp.com/doc/AN13460
https://github.com/NXPmicro/sbl
https://github.com/NXPmicro/sfw
https://github.com/NXPmicro/sbl/blob/master/doc/MCUOTASBLSFWUG.pdf
https://www.nxp.com/doc/AN13460

NXP Semiconductors

6 Revision history

Table 2 summarizes the changes done to this document since the initial release.

Table 2. Revision history

Revision history

Revision number

Date

Substantive changes

0

06 June 2022

Initial release

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

25/28

NXP Semiconductors

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no

liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed

to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical

or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Legal information

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept

any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,

as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement

is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization

from competent authorities.

Suitability for use in non-automotive qualified products — Unless this

data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.

It is neither qualified nor tested in accordance with automotive testing

or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive

equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

26/28

NXP Semiconductors

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and

English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the

ultimate design decisions regarding its products and is solely responsible

for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, pVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.
ColdFire — is a trademark of NXP B.V.
ColdFire+ — is a trademark of NXP B.V.
EdgeLock — is a trademark of NXP B.V.
EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

Legal information

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.
Freescale — is a trademark of NXP B.V.
HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.
Immersiv3D — is a trademark of NXP B.V.
12C-bus — logo is a trademark of NXP B.V.
Kinetis — is a trademark of NXP B.V.
Layerscape — is a trademark of NXP B.V.
Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.
MOBILEGT — is a trademark of NXP B.V.
NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.
QorlQ — is a trademark of NXP B.V.
SafeAssure — is a trademark of NXP B.V.
SafeAssure — logo is a trademark of NXP B.V.
StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright ©2021 Synopsys, Inc. Used with permission.

All rights reserved.
Tower — is a trademark of NXP B.V.
UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

Implementing FOTA on i.MX RT600 , Rev. 0, 06 June 2022

Application Note

27 /28

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

arm

Please be aware that important notices concerning this document and the product(s) described

herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 06 June 2022
Document identifier: AN13478

	Contents
	1 Introduction
	2 SBL and SFW overview
	3 FOTA implementation
	3.1 Signed + Non-encrypted OTA
	3.2 Signed + Encrypted OTA

	4 Conclusion
	5 References
	6 Revision history
	Legal information

